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1 Введение

В данной работе рассматривается одномерное уравнение Шредингера для потенциального

поля g2/x2, где x-координата. Предпринимается попытка построения когерентного состояния

и нахождения среднего модуля квадрата координаты для такого состояния. Данное уравнение

имеет отношение к термодинамике черной дыры, как было показано в статье [1].

1.1 Связь черной дыры с потенциалом g2/x2

В статье [1] показывается как данное уравнение может быть связанно с температурой черной

дыры.

Оказывается, что проблема скалярного поля вблизи пространства-времени черной дыры

может быть сведена к проблеме квантово -механической частицы с потенциалом обратного

квадрата.В этом случае d|x|2
dt можно рассматривать как скорость образования частиц гори-

зонтом, и математический результат, полученный выше, приобретает физический смысл.

Рассмотрим скалярное поле в пространствевремени 1 + 1 с метрикой

ds2 = B(r)dt2 −B−1(r)dr2 (1)

где B(r) имеет простой ноль при r = r0 с B′(r) = dB/dr, являющийся конечным и от-

личным от нуля при r0. (Мы будем работать с системой измерений (1+1), поскольку она

отражает всю необходимую физику.) Исчезновение B(r) в точке r = r0 указывает на наличие
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горизонта. Вблизи горизонта мы можем расширить B(r) следующим образом

B(r) = B
′
(r0)(r − r0) +O[(r − r0)

2] ≈ B
′
(r0)(r − r0) (2)

В случае радиуса Шварцильда,B
′
(r) = r−1

0 с r0 = 2M как радиусом Шварцильда. Для ска-

лярного поля Φ(x, t) уравнение поля выглядит так:

(□+
m2

0c
2

h2
)Φ = 0 (3)

С учетом (1) уравнение приобретает вид:

c2B(r)−1∂2tΦ− ∂r(B(r)∂rΦ) = m2
0c

2h2Φ (4)

Будем искать Φ в следующем виде:

Φ(r, t) = e−iωt ψ(r)√
B(r)

(5)

Тем самым приходим к уравнению:

−h
2

2

d2ψ

dr2
− α

(r − r0)2
ψ(r) = 0 (6)

Где α = h2ω2

2c2[B′ (r0)]2
вблизи горизонта. Положим x = r − r0 и β = α/m.Тогда уравнение (6)

становиться уравнением Шредингера для частицы с потенциалом −β
x2

−h
2

2

d2ψ

dx2
− β

x2
ψ(x) = ϵψ (7)

При этом в конце вычисление ϵ устремляется к нулю.

Таким образом уравнение скалярного поля в зоне Шварцильда эквивалентно уравнению

Шредингера для квантовой частицы в обратном квадратичном потенциале вблизи начала

координат.

После этого, для потенциала V (x) = − h2

2m (a2+ 1
4 )

1
x2 были поведены расчеты, использующие

интеграл Фейнмана по траекториям, которые дали следующее выражение

d|x(t)2|
dt

=
4h

ma
(a2 +

1

4
)(N +

1

2
) (8)

Где

N =
1

e2πa − 1
(9)

Эта величина сходна с формулой Планка, что и позволяет найти температуру черной дыры.
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1.2 Когерентное состояние

Рассмотрим построение когерентного состояния для квантового гармонического осциллятора.

Введем a = Q+iP√
2h
, a+ = Q−iP√

2h
, N = a+a, где Q,P -координата и импульс соответственно.

Рассмотрим состояние, определяемое по формуле:

|α⟩ = e
−|α|2

2

∑ αn

√
n
|n⟩ (10)

где |n⟩-собственные состояния гармонического осциллятора,α-произвольное комплексное чис-

ло. Согласно [3], данное состояние является собственным состоянием оператора a:

a |α⟩ = α |α⟩

В [3] показывается, что в этом случае это состояние реализует минимум соотношения неопре-

делённости

∆P∆Q = h

Также в [3] показывают, что эволюция во времени |α⟩ происходит таким образом, что это

состояние остается собственным вектором оператора a. Это говорит о том, что состояние (10)

минимизирует соотношение неопределённости во все моменты времени. Поэтому данное со-

стояние называют когерентным. В [1] построена методика нахождения когерентное состояния

для других систем. Такие состояния наиболее близки к классическим, и поэтому представля-

ют большой интерес.

1.3 Цели

Задачей данной работы является попытка прийти к выражению, схожему с (8), в котором

будет фигурировать величина N, но другим методом. В работе [2] описан метод получения

когерентного состояния для схожего потенциала, но имеющего квадратичный член. Полу-

чив когерентное состояние, можно вычислить среднее значение модуля квадрата координаты

и сравнить его с (8). Предпринимается попытка применения данного метода к потенциалу

нашей задачи.

2 Идея нахождения когерентного состояния и его исполь-

зования

В [2] для потенциала g2/x2 + x2/2 были получены следующие коммутационные соотношения:

H0 =
−d2

2
+
x2

2
+
g2

x2

3



B+ = (a+)2 − g2

x2

B = (a)2 − g2

x2

[H0;B
+] = 2B+ (11)

[H0;B] = −2B (12)

[B;B+] = 4H0 (13)

где a+,aклассические операторы рождения и уничтожения соответственно для гармониче-

ского осциллятора. Благодаря соотношениям (11), (12) строиться спектр собственных функ-

ций и энергий. Соотношения (11)-(13) позволяет судить какую алгебру образуют эти опе-

раторы, исходя из которой строится когерентное состояние. Попробуем обобщить данные

соотношения другие потенциалы. Рассмотрим операторы:

Hγ = H0 + γ
x2

2

b+ = B+ + γ
x2

2

b = B + γ
x2

2

где γ-постоянное вещественное число.

Получим

[Hγ ; b
+] = 2B+ + γx2 − γ(xd+ dx) (14)

[Hγ ; b] = −2B − γx2 − γ(xd+ dx) (15)

[b; b+] = 4Hγ (16)

Где d-оператор дифференцирование по x.

Учтем:

B+ −B = −(xd+ dx)

Тогда получим что уравнения 14-16 можно преобразовать к виду

[Hγ ; b
+] = (2 + γ)b+ − γb (17)

[Hγ ; b] = −(2 + γ)b+ γb+ (18)

[b; b+] = 4Hγ (19)

Мы можем представить коммутирование оператора Hγ с операторами b, b+ как действие мат-
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рицы на вектор с компонентами b, b+.(2 + γ) −γ

γ −(2 + γ)

b+
b

 =

(2 + γ)b+ − γb

γb+ − (2 + γ)b


Или запишем это так:

[Hγ ;

b+
b

] =

(2 + γ)b+ − γb

γb+ − (2 + γ)b


В дальнейшем, это соответствие будет записываться так:

[Hγ ; ...]− >

(2 + γ) −γ

γ −(2 + γ)


Данную матрицу при определенных γ можно диагонализовать.

Замечание: Все соотношения написанные выше верны, если вместо g2

x2 мы запишем − g2

x2 ,что

соответствует рассматриваемой задаче.В дальнейшем будем рассматривать случай, когда

− g2

x2 .

Нашей задаче соответствует γ=-1. В этом случае:

[H−1; ...]− >

 1 1

−1 −1


Оба собственных значения матрицы равны нулю, и матрица к сожалению не диагонализуетса,

а имеет вид жордановой клетки. Получается:

[H−1; ...]− > H
′
=

0 1

0 0


Или по другому:

[Hγ ; b
+ − b] = 2(b+ + b)

[Hγ ; b
+ + b] = 0

(H
′
матрица соответствующая H−1 в базисе, в котором Гамильтониан имеет вид жордановой

клетки).

Но мы можем рассмотреть достаточно близкие к -1 справа значения γ, и для соответству-

ющих Hγ построить когерентные состояния |ζ, γ⟩, и используя их получить < |x|2 > (γ) =

⟨ζ, γ| |x2| |ζ, γ⟩, а потом устремить γ к -1. Решая характеристическое уравнения для данной

матрицы, получаем, что собственные значения данного оператора равны

λ1,2 = ±2
√
1 + γ (20)
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Матрица перехода будет иметь вид:

C =

 γ
(
√
γ+1−1)2

1

1 γ
(
√
γ+1−1)2


Ее обратная матрица равна:

C−1 =
1

det|C|

 γ
(
√
γ+1−1)2

−1

−1 γ
(
√
γ+1−1)2


det|C| = (

γ

(
√
γ + 1− 1)2)

)2 − 1

Прежде всего заметим, что при γ=-1 определитель det|C|=0, но при γ>-1 это не так(для

достаточно близких значений).

Поскольку мы эту матрицу собираемся умножать на вектор

b+
b

, то определитель будет

являться числом, на которое делятся обе компоненты вектора. Это деление не изменит по-

следующие коммутационные соотношения, а также решения дифференциальных уравнений.

Поэтому в дальнейшем определитель учитываться не будет.

Теперь мы можем найти матрицы рождения и уничтожения для гамильтониана Hγ , кото-

рые будут обозначаться в дальнейшем A+ и A соответственно.Получаем:A+

A

 = C−1

b+
b


или:

A+ =
γ

(
√
γ + 1− 1)2

b+ − b (21)

A =
γ

(
√
γ + 1− 1)2

b− b+ (22)

Заметим, что A+ и A комплексно сопряжены.Тогда, с учетом (19) и (20), получаем:

[Hγ ;A
+] = 2

√
1 + γA+ (23)

[Hγ ;A] = −2
√
1 + γA (24)

[A;A+] = 4((
γ

(
√
γ + 1− 1)2

)2 − 1)Hγ (25)

Коэффициент перед гамильтонианом в (15) при -1<γ положителен, тогда согласно работе

[2], операторы A+,A,Hγ являются генераторами алгебры Ли группы SU(1, 1).В работе [2]

указан метод построения когерентного состояния в таком случае. Он и будет использован в

дальнейшем.
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Для нахождения собственных функций гамильтониана решим два уравнения

Aψ = 0 (26)

A+ψ = 0 (27)

Уравнение (26) соответствует состоянию с наименьшей энергией в спектре собственных функ-

ций, чьи энергии положительны.Уравнение (27) соответствует состоянию с наибольшей энер-

гией в спектре собственных функций, чьи энергии отрицательны.

В результате их решения получаем:

для A

ψ = C1e
(−(

√
1+γ)x2/2)x1/2(1−

√
1−8g2) + C2e

(−(
√
1+γ)x2/2)x1/2(1+

√
1−8g2) (28)

для A+

ψ = C1e
(+(

√
1+γ)x2/2)x1/2(1−

√
1−8g2) + C2e

(+(
√
1+γ)x2/2)x1/2(1+

√
1−8g2) (29)

Перед дальнейшими выкладками скажем, что будет рассматривать такие значения g, при

которых величина 1− 8g2 положительна.

Как видно, состояние (29) ненормируемое, поэтому его рассматривать не имеет смысла.

Для уравнения (28) имеем два линейно независимых решения, нормируемые и не имеющие

особенностей(т.к. 1−
√
1− 8g2>0). Напишем их отдельно:

ψ0,1 = C0,1e
(−(

√
1+γ)x2/2)x1/2(1−

√
1−8g2) (30)

ψ0,2 = C0,2e
(−(

√
1+γ)x2/2)x1/2(1+

√
1−8g2) (31)

Действуя на них гамильтонианом, находим их энергии:

E0,1 =
1

2
(1 + (1−

√
1− 8g2))(

√
1 + γ) (32)

E0,2 =
1

2
(1 + (1 +

√
1− 8g2))(

√
1 + γ) (33)

Тогда спектр гамильтониана будет равен

En,1 =
1

2
(1 + 2n+ (1−

√
1− 8g2))(

√
1 + γ) (34)

En,2 =
1

2
(1 + 2n+ (1 +

√
1− 8g2))(

√
1 + γ) (35)

Отметим, что при γ = −1 данные состояния становятся ненормируемыми.

Вообще говоря, группа SU(1, 1) реализуется при таких операторах K+,K−,K0, которые
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удовлетворяют следующим коммутационным соотношениям:

[K0,K
+] = K+ (36)

[K0,K
−] = −K− (37)

[K−,K+] = K0 (38)

перейдём от операторов A+, A,Hγ к операторам K+,K−,K0, которые будут удовлетворять

соотношениям (26)-(28):

K+ =
A+

2
√

(( γ
(
√
γ+1−1)2

)2 − 1)
√
1 + γ

(39)

K− =
A

2
√
(( γ

(
√
γ+1−1)2

)2 − 1)
√
1 + γ

(40)

K0 =
Hγ

2
√
1 + γ

(41)

Теперь, на основе этих операторов составим новый оператор:

K = K− − 2ζK0 + ζ2K+ (42)

Где ζ- произвольное комплексное число.

Тогда, согласно [2], для нахождения когерентного состояния надо решить следующие урав-

нение:

K |ζ, γ⟩ = 0 (43)

Введем некоторые обозначения

θ = (
1

2
√
(( γ

(
√
γ+1−1)2

)2 − 1)
√
1 + γ

)

η =
γ

(
√
γ + 1− 1)2

σ =
ζ√
1 + γ

α = θ(η − 1)(ζ2 + 1)

β = θ(η + 1)(ζ2 − 1)

В координатном представлении уравнение (43) примет вид:

((
α+ σ

2
)d2 + βxd+ ((

α− σ

2
)(1 + γ)x2 + (α− β)

g2

x2
+
β

2
)) |ζ, γ⟩ = 0
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Напомним, что d-оператор дифференцирования.

К сожалению, данное уравнение не удалось решить. Возможно, для его решения понадо-

бятся численные методы.

3 Вывод

В данной работе был рассмотрен гамильтониан квантовой частицы в потенциале вида V =

x2(1+γ)
2 − g2

x2 , при γ > −1. Было показано, что при таких значениях γ реализуется группа

SU(1, 1). Построены операторы рождения и уничтожения. Определены состояния, соответ-

ствующие наименьшим энергиям. Найдено уравнение, решение которого дает когерентное

состояние для рассматриваемого потенциала. Были показаны трудности, возникающие при

попытке построения операторов рождения и уничтожения для случая γ = −1. Для дальней-

шего продвижения в решении данной задачи могут быть использованы численные методы

решения дифференциальных уравнений.
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